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Abstract 

The 2014–2017 global coral bleaching event caused widespread coral mortality; however, its 

impact on the capacity for coral reefs to maintain calcium carbonate structures remained to be 

determined. Here, we quantified remotely sensed maximum heat stress during the 2014-2017 

bleaching event, census-based net carbonate budgets from benthic imagery and fish survey data, 

and net calcification from salinity normalized seawater total alkalinity anomalies collected from 

2017-2019 for 56 Pacific coral reef sites (Mariana Islands, Northwestern Hawaiian Islands, 

Pacific Remote Island Areas, and American Samoa). We incorporated the census-based and 

chemistry-based metrics to determine a calcification vulnerability index for each site to maintain 

calcium carbonate balance to provide accessible information to managers and policy makers. 

Most coral reef sites likely experienced ecologically severe (79%,n=44) or significant (9%,n=7) 

heat stress during the 2014-2017 coral bleaching event. Census-based net carbonate budgets 

(mean±95%=2.1±0.6 kg CaCO3 m-2 yr-1) were positive for 77% of sites (n=43), neutral for 16% 

of sites (n=9), and negative for 7% of sites (n=4). Chemistry-based net calcification 

(mean±95%=22±10 µmol kg-1) was positive for 84% of sites (n=47), neutral for 11% of sites 

(n=6), and negative for 5% of sites (n=3). The calcification vulnerability index suggested the 

Pacific Ocean reef sites surveyed were of minimal (68%,n=38) to moderate (32%,n=18) concern 

for maintaining calcium carbonate balance following the bleaching event. This suggests that 

many reefs maintained positive calcium carbonate balance, but that a large number of reefs may 

be approaching a potential threshold for maintaining their calcium carbonate balance under the 

climate crisis. 

Introduction 
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Scleractinian corals are the primary reef-builders of the coral reef structures that sustain 

ecosystem services ranging from shoreline protection, fisheries provisioning, cultural 

significance, and tourism revenue for billions of people worldwide (Kleypas et al. 2001; Perry 

and Alvarez‐Filip 2019; Woodhead et al. 2019). However, global coral cover has declined 

precipitously in recent decades under local and global environmental change (Gardner et al. 

2003; Bruno and Selig 2007; De’ath et al. 2012) with the third global coral bleaching event from 

2014-2017 further jeopardizing coral dominated reef states and associated maintenance of coral 

reef structures (Eakin et al. 2019). Quantifying these changes in coral reef structures and their 

associated geo-ecological functions represents a challenging task, but is essential to be able to 

predict future changes to the ecosystem services coral reefs provide to the people that depend on 

them (Perry and Alvarez‐Filip 2019). 

Quantifying changes in coral reef geo-ecological functions can be accomplished through 

measuring the net accumulation of calcium carbonate (CaCO3), but direct measurements of 

changes in coral reef bathymetry or accretion rates from sediment cores typically require 

multiple years to detect changes (Aronson and Precht 2001; Yates et al. 2017; Lange et al. 

2020a). Census-based net carbonate budgets and chemistry-based net coral reef calcification 

have been widely used to provide insights into the maintenance of coral reef structures under 

environmental change (e.g., see discussion in (Courtney and Andersson 2019; Lange et al. 

2020a; Browne et al. 2021) and references therein). Census-based methods sum annual CaCO3 

production and erosion rates of different functional groups to estimate net carbonate budgets 

from ecological surveys, but are limited by survey biases (i.e., what the observer can see) and 

typically rely on literature derived annualized rates (Chave et al. 1972; Perry et al. 2018b; Lange 

et al. 2020a). Chemistry-based methods utilize changes in seawater total alkalinity (TA) to 
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provide temporal snapshots of net coral reef calcification (i.e., TA changes by a factor of two for 

every mole of CaCO3 precipitated or dissolved (Broecker and Takahashi 1966; Smith and Key 

1975; Chisholm and Gattuso 1991)), but difficulties in constraining seawater hydrodynamics can 

generate significant uncertainties (Venti et al. 2012; Lowe and Falter 2015; Courtney and 

Andersson 2019). As a result, census-based net carbonate budgets (i.e., carbonate production – 

bioerosion) and chemistry-based net calcification (i.e., calcification – CaCO3 dissolution) are 

inherently quantifying slightly different processes to provide independent snapshots of the 

capacity for coral reefs to produce and maintain CaCO3 structures. These methods quantify 

processes on different spatial scales with census-based budgets typically quantifying net 

carbonate production at the spatial scale of transects (i.e., tens of meters squared) and ecosystem-

scale chemistry-based metrics typically integrating net calcification of the hydrochemical 

footprint modified by the benthos (i.e., hundreds to thousands of meters squared) (Courtney et al. 

2016) (but see also tens of meters squared footprints for chemistry-based eddy covariance 

methods (Berg et al. 2007)). Furthermore, depending on the frequency of observations, the two 

methods reflect the net sum of processes on different timescales, i.e., census-based observations 

typically reflect processes on annual timescales whereas individual chemistry-based observations 

reflect the sum of processes occurring over hours to days depending on reef seawater residence 

time (Figure 1). Both methods are generally time intensive, require a great deal of careful 

consideration, and are typically associated with a range of uncertainties (Courtney et al. 2016; 

Courtney and Andersson 2019; Lange et al. 2020a). These characteristics effectively limit each 

method’s power and capacity to quantify global-scale changes in coral reef geo-ecological 

functions to ongoing ocean warming, acidification, and deoxygenation over a broad spectrum of 

spatial and temporal scales. 
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93 

94 Figure  1. Conceptual figure  showing hypothesized trends  in census-based carbonate budget  (G;  top  panel)  and  

chemistry-based net  community calcification based on salinity n ormalized  alkalinity anomalies  (DnTA;  bottom  

panel)  for a c oral reef exposed to   multiannual  perturbations  (black a rrows)  over  a 12-year  period. The census-based 

and chemistry-based data are based on annual  and monthly observations,  respectively.  Note  that individual 

measurements  over  a limited observation period represent the net sum of processes  occurring annually (census-

based)  to over  hours  or  days  (chemistry-based), and thus, may not track each other  and could even appear 

contradicting without  a complete  temporal perspective. Regardless,  these observations serve as important metrics  in  
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the context of future global environmental change and observations, and especially if the measurements encompass 

multiple reefs over a large spatial area. The hypothesized trends in the figure were adopted from observations 

presented in (Yeakel et al. 2015; Courtney et al. 2018, 2020). 

To address this limitation, we combined simplified assessments of census-based 

carbonate budgets from benthic imagery and fish survey data and chemistry-based net 

calcification from the difference between coral reef seawater TA and offshore seawater TA. 

While each of these simplified metrics is associated with uncertainty, leveraging two 

independent approaches increases confidence in assessing the maintenance of coral reef CaCO3 

structures, and also offers insight to chronic vs. acute concerns of the CaCO3 balance across 

varying spatial scales (Courtney et al. 2016; Courtney and Andersson 2019; Lange et al. 2020a). 

We therefore applied these methods to pre-existing monitoring data from 56 coral reef sites 

across the Mariana Islands, Northwestern Hawaiian Islands, Pacific Remote Island Areas, and 

American Samoa to assess the following questions: (1) What is the capacity for coral reefs to 

maintain their CaCO3 structures following the 2014-2017 coral bleaching event based on the 

census-based and chemistry-based approaches? (2) Does maximum heat stress experienced 

during the 2014-2017 coral bleaching event or the commonly used metric of coral cover predict 

our simplified carbonate budget and net calcification estimates? In addition to addressing these 

questions, this synthesis provides critical baseline data and simplified, categorical assessments of 

coral reef capacity to maintain CaCO3 structures for managers and policymakers as part of 

ongoing monitoring and conservation efforts. 
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124 Figure  2. Map  of  coral  reef  sites  across  the  Mariana  Islands,  Northwestern  Hawaiian  Islands,  Pacific  Remote  Island  

Areas,  and  American  Samoa  that  were  surveyed  as  part  of  the  NOAA National  Coral  Reef  Monitoring  Program.  125 

126 

127 Methods  

Survey locations  

 We leveraged coral reef benthic community composition, fish community composition,  

and carbonate chemistry data collected from  designated coral reef climate monitoring sites   

(n=56) across the Pacific Ocean between 2017 and 2019 as part of the National Oceanic and 

Atmospheric Administration’s (NOAA) Pacific National Coral Reef Monitoring Program. 

Surveyed reef locations included forereef sites at ~15 m depth in the Mariana Islands (16 sites  
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around Guam, Pagan, and Saipan in 2017), Northwestern Hawaiian Islands (6 sites around Kure 

and Lisianski in 2019), Pacific Remote Island Areas (2 sites around Wake in 2017 and 18 sites 

around Baker, Howland, Jarvis, Kingman, and Palmyra in 2018), and American Samoa (14 sites 

around Rose, Swains, Tau, and Tutuila in 2018) (Figure 2). 

Census-based net carbonate budgets 

We used a simplified version of the census-based ReefBudget methodology (Perry et al. 

2018b) to retroactively estimate carbonate production from benthic imagery data. At each site, 

images were taken with a Canon G9x one meter off the substrate, every meter along each side of 

a 15 m “L” shaped transect for a total of 30 images per site (see (Pacific Islands Fisheries 

Science Center 2021) for further details on data collection). Ten random points in each image 

were then annotated using the CoralNet image annotation software for a total of 300 annotations 

per site (Beijbom et al. 2015). Corals were identified to genus or a combination of genus and 

growth form for select genera (Acropora, Montipora, Pavona and Porites), macroalgae to genus, 

and other benthic features to functional group or higher-level taxonomic grouping (e.g., ‘crustose 

coralline algae’, ‘sand’, ‘sponge’, ‘turf algae’) using the NOAA CRED label set (n=95 labels) in 

CoralNet (Lozada-Misa et al. 2017). Points were pooled across the transect tape to determine the 

percent composition of each benthic feature at each site (Pacific Islands Fisheries Science Center 

2021). The percent cover of each label was then multiplied by the area normalized Indo-Pacific 

calcification rates with endolithic bioerosion for each benthic feature by (Courtney et al. 2021a) 

and summed to calculate gross carbonate production and endolithic bioerosion for each site 

(Perry et al. 2018b). These rates adapt the ReefBudget Indo-Pacific Carbonate Production v1.2 

datasheet (Perry et al. 2018b) for use with CoralNet imagery by accounting for median colony 

size, rugosity, colony morphology, linear extension, and skeletal density for all of the “NOAA 
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CRED” CoralNet identification labels ReefBudget methodologies (see (Courtney et al. 2021a) 

for further details). While the uncertainty ranges in the rates from (Courtney et al. 2021a) used in 

this study account for some degree of variability in rates across the Pacific Ocean, the use of 

constant rates (±uncertainties) between sites does not account for any potential systematic 

differences in rates between sites, which is a common limitation of census-based carbonate 

budgets. 

In the absence of co-located benthic survey and fisheries data, we used coral reef fish 

survey data collected from stratified random sites around each of the islands (Pacific Islands 

Fisheries Science Center 2017a; b; c, 2019a; b) to quantify gross parrotfish bioerosion (Perry et 

al. 2018b). In each survey, two divers quantify the fish communities in paired 15 m diameter 

cylinders using the stationary point count (SPC) method, identifying, counting, and estimating 

the total length of fishes (see (Ayotte et al. 2011) for further details on data collection). We used 

the data collected at mid-depth sites (>6-19 m) around islands in survey years that correspond 

with the climate monitoring sites. However, matching fish community data was missing for the 

2019 Northwestern Hawaiian Islands surveys so we used fish community data from 2017 and 

therefore must make the assumption that parrotfish bioerosion rates determined from the 2017 

data were similar to 2019 when the other benthic community composition and carbonate 

chemistry data were collected. 

Parrotfish bioerosion was estimated from the survey data as per the following allometric 

relationship between body size and bioerosion rate from (Lange et al. 2020b): Bioerosion (kg 

CaCO3 ind–1 y–1) = a ´ TLb. Constants a and b were empirically derived from linear regressions 

between the log of the mid-point of total length (TL) in cm for each size bin and the log of the 

corresponding bioerosion rate (kg CaCO3 ind–1 y–1) for initial and terminal phase fish for each 
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species from the ReefBudget Indo-Pacific Parrotfish erosion rates v1.3 data sheet (Perry et al. 

2018b). We used the fixed bioerosion rate for Bolbometopon muricatum following (Perry et al. 

2018b) and substituted mean genus-level bioerosion rates for taxon lacking species-level data. 

While previous studies have documented differences between initial and terminal phase 

bioerosion rates (Lange et al. 2020a), this information was lacking in the fish surveys so a and b 

were therefore estimated for all parrotfish regardless of phase in this study. The resulting 

species-specific bioerosion rates for each size bin and the resulting a and b constants used to 

quantify parrotfish bioerosion rates from observed total length in this study are summarized in 

Table S1. Individual parrotfish bioerosion per m2 (survey area = pr2, where r = 7.5 m radius of a 

cylinder) was summed in each replicate and then averaged between paired cylinders at each 

survey site. Estimates were averaged across sites within a given stratum (island, reef zone, and 

depth bin [all mid-depth]) and then pooled up to the scale of individual islands by weighting 

strata by their proportional area within each island in accordance with the stratified survey design 

(Heenan et al. 2017) to quantify mean (±SE) parrotfish bioerosion rates for each island. 

Sea urchins were not directly quantified in the survey data, but the reef-fish surveys 

qualitatively assessed relative abundance of sea urchins at each site and listed them as rare in 

74.8% to 99.8% across the respective regions in this study (Pacific Islands Fisheries Science 

Center 2017a; b; c, 2019a; b). Given the lack of robust sea urchin test size and density data 

necessary to estimate sea urchin bioerosion following established methods (Perry et al. 2018b) 

and their rare abundance at the majority of sites, we have omitted sea urchin bioerosion from this 

study and therefore implicitly assume that they are not major sources of bioerosion across our 

study sites. 
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Net carbonate budgets (kg CaCO3 m–2 y–1) were thus calculated as carbonate production 

minus endolithic bioerosion and parrotfish bioerosion ´ 50% reincorporation rate for each site 

following (Perry et al. 2018a). While mechanical bioerosion by parrotfish is represented as a net 

loss of CaCO3 following ReefBudget methods (Perry et al. 2018b), there is limited data 

quantifying the proportion of mechanically bioeroded CaCO3 that is ultimately exported from the 

reef environment (Browne et al. 2021). Here we have assumed that 50% of mechanical parrotfish 

bioerosion was reincorporated back into the reef matrix with the remaining 50% exported from 

the reef following (Hubbard et al. 1990; Perry et al. 2018a). We conservatively calculated the 

lower bound of the net carbonate budgets as the lower bound of carbonate production minus the 

upper bound of bioerosion (i.e., parrotfish bioerosion ´ 50% reincorporation) and, conversely, 

the upper bound of the net carbonate budgets as the upper bound of carbonate production minus 

the lower bound of bioerosion (i.e., parrotfish bioerosion ´ 50% reincorporation). We therefore 

determined net carbonate budgets as a categorical variable that was positive if the net carbonate 

budgets (±uncertainties) were greater than zero (i.e., net CaCO3 production), neutral if the net 

carbonate budgets (±uncertainties) overlapped zero, and negative if the net carbonate budgets 

(±uncertainties) were less than zero (i.e., net CaCO3 loss). 

Chemistry-based net calcification 

Differences in coral reef and offshore seawater total alkalinity were used to assess 

chemistry-based net calcification for each reef site (Langdon et al. 2010; Cyronak et al. 2018). 

Seawater carbonate chemistry samples were collected via a 5 L Niskin bottle at 0-20 m depth, 

stored in 500 mL borosilicate glass bottles with a 200 µL saturated mercuric chloride solution, 

and analyzed for TA (±0.1% uncertainty) following best practices on an open cell potentiometric 

acid titration system developed by the laboratory of Professor A. Dickson (see (Barkley et al. 
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2021) for further details on data collection). Salinity (±0.0005 S m-1 uncertainty) was measured 

in situ via a Seabird Electronics 19+ CTD (2017–2018) or RBR Concerto3 (2019) at the time of 

sampling (Barkley et al. 2021). Salinity normalized total alkalinity anomalies (∆nTA) for each 

coral reef location were calculated from NOAA Pacific NCRMP offshore and coral reef total 

alkalinity (TA) data: ∆nTA = nTAoffshore – nTAreef (Langdon et al. 2010; Cyronak et al. 2018) so 

that positive values reflected net calcification and negative values net CaCO3 dissolution. TA 

was normalized according to the protocols outlined in (Courtney et al. 2021b). To assess the 

uncertainties introduced by the salinity normalization calculation and the potential influence of 

zero salinity end members with a TA > 0, multiple calculations were conducted for a range of 

potential freshwater TA end members (TAS=0=15–1298 µmol kg-1) and for salinity normalization 

with respect to both the mean offshore or mean reef salinity (Courtney et al. 2021b). The mean, 

maximum, and minimum of all ∆nTAoffshore and ∆nTAreef values for each cruise and location 

were then used to determine ∆nTA and the associated uncertainties (∆nTA±uncertainties). 

While the magnitude of ∆nTA can be used to calculate net coral reef calcification rates if 

seawater depth and residence time are known, these factors were not quantified as part of the 

monitoring efforts in this study so the magnitude of ∆nTA for each reef only reflects the total 

change in alkalinity, but not the rate of change. The sign of ∆nTA nonetheless elucidates whether 

the reef system was net calcifying (i.e., positive ∆nTA) or net CaCO3 dissolving (i.e., negative 

∆nTA) at the time of measurement. We therefore determined chemistry-based net calcification 

from the ∆nTA for each reef as a categorical variable that was positive if the ∆nTA 

(±uncertainties) was greater than zero (i.e., net calcifying), neutral if the ∆nTA (±uncertainties) 

overlapped zero, and negative if the ∆nTA (±uncertainties) was less than zero (i.e., net CaCO3 

dissolving). 
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Degree Heating Weeks 

Owing to the proximity of the 2014-2017 global coral bleaching event (Eakin et al. 2019) 

to the 2017-2019 survey dates in this study, we extracted the maximum accumulated degree 

heating weeks (DHW) at each reef site for each year between 2014 and 2017 to quantify the 

number of reef sites experiencing ecologically significant (DHW≥4) or ecologically severe 

(DHW≥8) heat stress (Eakin et al. 2010; Heron et al. 2016; Skirving et al. 2019, 2020) from the 

NOAA Coral Reef Watch DHW v3.1 dataset (NOAA Coral Reef Watch 2018). 

Correlations between coral reef metrics 

Linear mixed effects models were used to quantify the relationships between net 

carbonate budgets, salinity normalized total alkalinity anomalies, percent coral cover, and 

maximum degree heating weeks experienced during the 2014–2017 global coral bleaching event. 

Random effects were incorporated to allow the estimated slopes and intercepts for each response 

variable to vary by island. All models were constructed and evaluated using the R package nlme 

(Pinheiro et al. 2019). 

Calcification Vulnerability Index 

In response to the need for simple, but comprehensive and meaningful metrics of coral 

reef function and status under global environmental change that offer insight for researchers, 

managers, and policymakers (NOAA Ocean Acidification Program 2018), we combined the 

census-based and chemistry-based assessments in a term referred to as the calcification 

vulnerability index. This index was determined as a categorical variable from the census-based 

net carbonate budgets and chemistry-based net calcification assessments for each reef. 

Calcification vulnerability index was therefore positive for reefs with positive net carbonate 

budgets and net calcification assessments, negative for reefs with negative net carbonate budgets 
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and net calcification assessments, and neutral for any other combination of positive, neutral, or 

negative net carbonate budgets and net calcification assessments. While there is nonetheless 

uncertainty in quantifying the maintenance of coral reef CaCO3 structures from snapshot data, 

we interpret positive calcification vulnerability index as reefs that are of minimal concern for 

maintaining their CaCO3 balance, neutral calcification vulnerability index as reefs that are of 

moderate concern for maintaining this balance, and negative calcification vulnerability index as 

reefs that are of imminent concern for maintaining their CaCO3 balance. We then used Kruskal-

Wallis tests to evaluate how well the categorical census-based net carbonate budgets (i.e., 

positive, neutral, or negative), categorical chemistry-based net calcification assessments (i.e., 

positive, neutral, or negative), and calcification vulnerability index corresponded to the 

maximum heat stress experienced during the 2014–2017 global coral bleaching event and the 

commonly used reef condition metric of percent coral cover (Gardner et al. 2003; Bruno and 

Selig 2007; De’ath et al. 2012). Pairwise comparisons of maximum heat stress and coral cover 

between positive, neutral, and negative classifications for each metric were then conducted using 

post hoc Dunn’s Tests with Bonferroni corrections using the statistical package FSA (Ogle et al. 

2021). 
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288 Figure  3.  (a) Maximum  Degree H eating W eeks (DHW) experienced a t each isla nd in e  ach y ear of the 2 014–2017 

global  coral  bleaching event.  Dashed orange line indicates  ecologically significant  coral  heat  stress  (4 DHW)  and 

dashed red line indicates  ecologically severe  coral  heat  stress  (8 DHW).  (b)  Net  carbonate  budget  (G) ±  uncertainties 

are reported for  each site around each island.  (c)  Salinity normalized total  alkalinity anomaly (∆nTA)  ±  uncertainties  

are reported for  each site around each island.  All  sites  are denoted by the name of  the respective island or  atoll.  
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Accumulated Bleaching-relevant Heat Stress 2014-2017 

The majority of coral reef sites likely experienced ecologically severe (i.e., DHW ≥ 8) 

heat stress (i.e., 79% of reef sites; n=44; DHW ≥ 8) at some point during the 2014–2017 coral 

bleaching event with multiple years of bleaching-level stress recorded in the remotely sensed 

data (Figure 3a). While we refer to the accumulated heat stress from 2014–2017 as the global 

coral bleaching event following (Eakin et al. 2019), we acknowledge that many reefs in this 

study experienced multiple years with projected bleaching level heat stress suggesting this was a 

series of bleaching events for many locations (Figure 3a). Additional reef sites around the islands 

of Wake, Swains, and Tutuila likely experienced ecologically significant (i.e., DHW ≥ 4) heat 

stress (i.e., 9% of reef sites; n=5; 4 ≤ DHW ≤ 8; Figure 3a). The islands of Kingman and Palmyra 

in the Pacific Remote Island Areas harbored the only sites (i.e., 13% of reef sites; n=7) that likely 

did not experience ecologically significant heat stress (i.e., DHW < 4) during the 2014–2017 

coral bleaching event (Figure 3a). 
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309 Figure  4. The  number  of  reef  sites  classified  as  having  either  positive,  neutral,  or  negative  (a)  census-based net  

carbonate budget, (b)  chemistry-based net  calcification, and (c)  calcification vulnerability index are reported for  

each island within the Mariana Islands,  Northwestern Hawaiian Islands,  Pacific Remote Island Areas,  and American 

Samoa.  All  sites  are  denoted by the  name  of  the  respective isla nd o r atoll.  
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314 Coral Reef Calcification Metrics  

 The mean (±95%) of site-level census-based net carbonate budgets     was 2.1±0.6 kg  

CaCO -2 -1 -2 -13  m  yr  (range = -1.3 to 9.6 kg CaCO  3  m  yr ) (Figure 3b) with 43 reef sites exhibiting   

net positive carbonate budgets, 9 sites exhibiting neutral net carbonate budgets, and 4       sites 
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318 exhibiting net negative carbonate budgets (Figure 4a). The mean (±95%) of site-level chemistry     -

based salinity normalized alkalinity anomalies was 22±10 µmol kg -1  (range = -38 to 270 µmol  

kg-1) (Figure 3c) with 47 sites exhibiting positive net calcification, 6 sites exhibiting neutral net      

calcification, and 3 sites exhibiting negative net calcification (Figure 4b). Calcification     

vulnerability index  was positive for 38 reef sites, neutral for 18 reef sites, and negative for 0 reef       

sites (Figure 4c).    
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325 

326 Figure  5. Site-level correlations  between census-based net  carbonate budgets  (G),  chemistry-based salinity 

normalized total  alkalinity anomalies  (∆nTA), percent  coral  cover,  and maximum  degree heating weeks.  (a)  ∆nTA i s  

evaluated as  a function of  G, (b) G is evaluated  as  a function of  percent  coral  cover, and (c) ∆nTA  is evaluated a s a  

function o f percent coral cover.  (d, e, f) Maximum  degree heating weeks  refers to th e m aximum  accumulated  degree  

heating weeks  experienced during the 2014-2017 global  coral  bleaching event.  (d) Percent coral cover, (e) G, and (f)  

∆nTA w ere each  evaluated as  a function of  maximum  degree heating weeks.  Linear  regressions  (±95%) are p lotted  

for linear mixed e ffects models for all slopes with p <0.05.  The v ertical  orange line indicates  ecologically significant  

coral  heat  stress  (4 DHW)  and vertical  red lin e in dicates ecologically se vere c oral heat stress (8 D HW).  
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335 Correlations Between Coral R  eef Metrics  
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There were no detectable correlations between site-level ∆nTA and G (p=0.929), ∆nTA 

and percent coral cover (p=0.551), and G and maximum DHW (p=0.430) (Figure 5). In contrast, 

positive correlations were observed between G and percent coral cover (slope = 0.13 G per % 

coral cover; p<0.001) and ∆nTA and maximum DHW (slope  = 1.66 µmol/kg per DHW; 

p=0.044) (Table S2). A negative correlation was observed between coral cover and maximum 

DHW (slope = -0.86 % coral cover per DHW; p=0.042). The threshold for maintaining positive 

net carbonate budgets was 8.6±6.0% from the linear mixed effects models (Figure 4b, Table S2). 

Degree Heating Weeks and Coral Cover as Predictors of Coral Reef Calcification Metrics 

There were detectable differences in maximum DHW experienced during the 2014–2017 

coral bleaching event between positive, neutral, and negative net carbonate budgets (Kruskal-

Wallis Test, p<0.004) with higher maximum DHW for negative net carbonate budgets than 

positive (Dunn’s Test, p=0.003, Figure 6a) and neutral (Dunn’s Test, p=0.014, Figure 6a) net 

carbonate budgets. Conversely, there were no detectable differences in maximum DHW 

experienced during the 2014–2017 coral bleaching event between classifications of chemistry-

based net calcification estimates (Kruskal-Wallis Test, p=0.780, Figure 6b) or calcification 

vulnerability index (Kruskal-Wallis Test, p=0.243, Figure 6c). 

There were detectable differences in coral cover between positive, neutral, and negative 

net carbonate budgets (Kruskal-Wallis Test, p<0.001) with lower coral cover for reefs with 

negative net carbonate budgets compared to positive net carbonate budgets (Dunn’s Test, 

p=0.001), with no detectable differences in coral cover between reefs with negative net carbonate 

budgets compared to neutral net carbonate budgets (Dunn’s Test, p=0.193) or neutral net 

carbonate budgets compared to positive net carbonate budgets (Dunn’s Test, p=0.157) (Figure 
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359 6d). Conversely, there were no detectable differences in coral cover between net calcification  

classifications (Kruskal-Wallis Test, p=0.381) (Figure 6e). Lastly, we observed detectable   

differences in coral cover between classifications of calcification vulnerability index (Kruskal  -

Wallis Test, p=0.003) with greater coral cover at  positive calcification vulnerability index sites   

compared to sites with  a neutral (Dunn’s Test, p=0.003) calcification vulnerability ind  ex. There   

were no sites with a negative calcification vulnerability ind  ex  (Figure 6f).   

360 

361 

362 

363 

364 

��� ������� �������
� /� ��
 ��� ����	�
 ��� ����	���
	�� ��� ����	���
	�� ����� ���	�	
� �� ! 

� 
��
��


 
�
��
��

 �
� 

� 
+
,
-

�
�!

 ��
��

�.
��

�$
� 

�� 

�� 

�� 

�� 

� 

&� 

%� 

$� 

#� 

"� 

�� 

�� 

�� 

�� 

� 

�� 

' ( �)�"
' ( �)�"  

 

�� ��

�


�� ��

�� ��

�


�� ��

�� ��

�


�� ��

�

�


�� 

�� 

�� 

� 
���	
	 ��
��� ��
	 

�� 

�� 

�� 

�� 

� 
���	
	 ��
��� ��
	 ���	
	 ��
��� ��
	 

� � ������� �������
� /� ��
 ��� ����	�
 ��� ����	���
	�� �*� ����	���
	�� ����� ���	�	
� �� ! 
&� 

' ( �)�"  %� 

$� 

#� 

"� 

�� 

�� 

�� 

�� 

� 
���	
	 ��
��� ��
	 

&� 

%� ' ( �)�"  

$� 

#� 

"� 

�� 

�� 

�� 

�� 

� 
���	
	 ��
��� ��
	 ���	
	 ��
��� ��
	 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

366 Figure  6.  Maximum  degree  heating  weeks  (DHW)  experienced  during  the  2014-2017 global  coral  bleaching event  

are reported for  positive,  neutral,  and negative classifications  of  the (a)  census-based net  carbonate budget, (b)  

chemistry-based net  calcification, and (c)  calcification vulnerability index as  circles  for  each coral  reef.  Percent  coral  

cover  is  reported for  positive,  neutral,  and negative classifications  of  the (d)  census-based net  carbonate budget,  (e)  

chemistry-based net  calcification, and (f)  calcification vulnerability index  as  circles  for  each coral  reef.  Mean ±  95%  

maximum DHW  and  percent  coral  cover  are  plotted  as  squares  with  line  range  on  top  of  the  site  level  circles  for  

each category.  Horizontal  pairwise  comparisons  above  the categorical  variables  represent statistical significance a t 
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the alpha=0.05 level from post hoc Dunn’s Tests with Bonferroni Corrections conducted on Kruskal-Wallis Tests of 

maximum DHW and percent coral cover, respectively, vs. the coral reef calcification metric in each panel. 

Site-level coral reef summary data 

In addition to the primary analyses presented here, site-level benthic community 

composition, seawater carbonate chemistry data, census-based net carbonate budgets, chemistry-

based net calcification estimates (i.e., salinity normalized total alkalinity anomalies), 

calcification vulnerability index, and maximum DHW experienced for each of the 56 coral reefs 

in this study are available in the supplementary material (Table S3). 

Discussion 

While the majority of the Pacific Ocean reef sites investigated here most likely 

experienced ecologically severe (n=44, 79% of total) or significant (n=5, 9% of total) heat stress, 

mean (±95%) census-based net carbonate production (G=2.1±0.6 kg CaCO3 m-2 yr-1) and 

chemistry-based net calcification (∆nTA=22±10 µmol kg-1) were positive in this study (Figure 

3). Moreover, 77% (n=43 sites) of coral reef locations exhibited positive net carbonate budgets 

while positive net calcification states were observed for 84% (n=47 reefs) of coral reef locations 

(Figure 4). The combined census-based and chemistry-based calcification vulnerability index 

suggests that all reef sites were therefore classified as minimal (68%, n=38 sites) to moderate 

(32%, n=18 sites) concern for maintaining their CaCO3 balance (Figure 4) at the time of 

observation in the years following the global bleaching event. However, some caution is advised 

in interpreting these results, as we do not know how these properties changed in response to the 

bleaching event. Regardless, at the time of the observations it can be concluded that more than 

half of the reefs surveyed showed a positive CaCO3 balance from both a census-based and 

https://alpha=0.05
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chemistry based perspective, but that many coral reefs may be approaching a potential tipping 

point for maintaining calcium carbonate structures and accretion under ongoing and future 

climate change. The metrics presented here assess concern for maintaining CaCO3 balance based 

on census and chemistry-based approaches; however, the question remains whether thresholds 

other than zero may be more relevant to the sustained geo-ecological function of coral reefs? The 

mean net carbonate budgets in this study were low (mean±95%=2.1±0.6 kg CaCO3 m-2 yr-1) 

supporting the notion that reefs may be unable to keep up with accelerating sea level rise under 

higher CO2 emissions scenarios (Perry et al. 2018a), especially when taking into account the 

additional role of chemical CaCO3 dissolution and physical transport processes that were omitted 

from the census-based methods (Browne et al. 2021). Additionally, these assessments of concern 

for maintaining reef’s CaCO3 balances are based on the present assessment and do not take into 

account the future stressors on net carbonate budgets caused by increases in coral bleaching 

events, coral disease outbreaks, and CaCO3 dissolution rates (Van Hooidonk et al. 2016; Randall 

and van Woesik 2017; Eyre et al. 2018). 

The present observations of calcification metrics were made after the 2014-2017 global 

coral bleaching event with no direct estimations of coral reef calcification metrics before the heat 

stress event so the underlying mechanism for any associations between DHW experienced and 

the calcification metrics in this study remain equivocal. Nonetheless, coral cover was negatively 

correlated with maximum DHW during the 2014–2017 global coral bleaching event (Figure 5d), 

which is consistent with observations of widespread coral mortality observed in these regions 

during this anomalous warm period (Reynolds et al. 2014; Couch et al. 2017; Vargas-Ángel et al. 

2019). At the island scale, Jarvis experienced repeated years with DHW>30 (Figure 3a), high 

coral mortality during the 2014-2017 coral bleaching event (Vargas-Ángel et al. 2019), and was 
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the only island in this study with negative net carbonate budgets (Figure 3b, 4a). While there was 

no detectable trend between census-based net carbonate budgets and maximum DHW (Figure 

5e), reefs with negative net carbonate budgets did experience greater maximum DHW than reefs 

with positive or neutral net carbonate budgets (Figure 6a). Collectively, this evidence suggests 

heat stress may have decreased net carbonate budgets owing to bleaching induced coral mortality 

from elevated heat stress (Figure 3,5). Notably, there was a positive correlation between ∆nTA 

and maximum DHW (Figure 5f), with Jarvis maintaining positive chemistry-based net 

calcification despite experiencing extensive coral mortality (Figure 3). While we lack the data to 

rigorously explain this seemingly paradoxical correlation between ∆nTA and DHW, there was 

no difference in maximum DHW between positive, neutral, and negative ∆nTA classifications 

(Figure 6b). Thus, the sign of net calcification states did not correlate with maximum DHW and, 

instead, only the magnitude of ∆nTA was correlated with maximum DHW. We posit that longer 

seawater residence times could account for a greater accumulation of DHW during the coral 

bleaching event owing to local amplification of warming (sensu (DeCarlo et al. 2017)) and 

greater ∆nTA owing to longer times for calcifiers to modify the overlying seawater (Courtney 

and Andersson 2019); however, this remains speculative as we lack the information to rigorously 

investigate this finding with the currently available data. 

There was no detectable relationship between census-based net carbonate budgets and 

chemistry-based salinity normalized total alkalinity anomalies (Figure 5a), which resulted in a 

slight mismatch between the sign of net carbonate budgets and net calcification within each focal 

region (Figure 4). This is not entirely unexpected since census-based net carbonate budgets (i.e., 

carbonate production – bioerosion) and chemistry-based net calcification (i.e., calcification – 

CaCO3 dissolution) quantify different processes integrating over different spatial and temporal 
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scales (Figure 1). For example, physical aspects of bioerosion may not necessarily lead to 

chemical CaCO3 dissolution that would be detected by chemical measurements, and, conversely, 

sources of CaCO3 dissolution are not directly accounted for in the census-based carbonate 

budgets. In particular, the omittance of chemical CaCO3 dissolution in microenvironments within 

the reef framework and sediments is a common limitation of census-based carbonate production 

estimates and can be a significant driver capable of shifting reefs with otherwise calcifying 

communities to net CaCO3 dissolution (Tribble et al. 1990; Andersson et al. 2009; Cyronak et al. 

2013). Additionally, mismatches in temporal scales between the annualized estimates of 

carbonate production estimates and nearly instantaneous measurements of net calcification by 

chemistry-based methods could further decouple estimates of net carbonate budgets and net 

calcification (Figure 1). For example, coral reef TA samples in this study were primarily 

collected during daylight hours (Figure S1), which would tend to bias measurements towards net 

calcification (Cyronak et al. 2018). Moreover, differences in hydrodynamics between sites have 

significant capacity to decouple rates of benthic calcification from the magnitude of salinity 

normalized total alkalinity anomalies primarily owing to differences in seawater residence times 

and depth between locations (Cyronak et al. 2018; Courtney and Andersson 2019). The process 

of salinity normalization itself may also impart some additional uncertainties (Courtney et al. 

2021b), especially in the case of Palmyra Atoll in this study, which experienced the largest 

salinity difference between the reef and offshore and negative net calcification (e.g., see larger 

∆nTA uncertainties for Palmyra in Figure 3c). (Koweek et al. 2015) observed variable net 

calcification rates with high rates of calcification observed during the daytime with periods of 

nighttime dissolution at Palmyra Atoll, suggesting a combination of nighttime dissolution and/or 

entrainment of lagoon water likely led to the negative ∆nTA observed for Palmyra in this study. 
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This apparent contradiction highlights the value of collecting seawater TA samples over a full 

diel cycle and/or for extended periods of time while also avoiding sampling over large salinity 

ranges to reduce uncertainties in chemistry-based net calcification measurements. In contrast, the 

net carbonate budgets in this study are also somewhat limited by the use of top-down imagery, 

which does not account for additional sources of calcification or CaCO3 dissolution hidden 

beneath the overlying canopy (Goatley and Bellwood 2011; Courtney et al. 2016), and mean 

(±uncertainty) annualized calcification and bioerosion rates from the literature, which does not 

account for systematic spatiotemporal variability in these sources of carbonate production and 

loss (Lange et al. 2020a). The categorical metrics were not always in direct agreement in this 

study, but the calcification vulnerability index more closely followed the census-based net 

carbonate budgets than the chemistry-based net calcification assessment (Figure 4). While this 

might suggest that the chemistry-based metric provides little additional information, we conclude 

that assessing vulnerability of coral reefs to maintain their CaCO3 balance through multiple lines 

of evidence increases confidence in our assessment while providing different time perspectives 

of a chronic vs. acute condition (Figure 1) that integrate over varying spatial scales. Tracking 

changes in simplified net carbonate budgets and salinity normalized total alkalinity anomalies 

through time within each reef system using directly comparable methods may also provide more 

quantitative evidence of changes in calcification states through time (Figure 1). 

Traditionally, studies have monitored long-term changes in coral cover as a metric for 

coral reef condition (Gardner et al. 2003; Bruno and Selig 2007; De’ath et al. 2012). While field-

based evidence for the correlation between coral cover and net calcification in chemistry-based 

studies is lacking (Courtney and Andersson 2019), overall coral cover is generally correlated 

with net carbonate production in census-based studies (Perry et al. 2013, 2015; Januchowski-
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Hartley et al. 2017). However, net carbonate production rates can nonetheless vary between reef 

systems of similar coral cover owing to differences in the relative abundances of coral taxa with 

varying calcification rates (Perry et al. 2015; Januchowski-Hartley et al. 2017; Courtney et al. 

2020) and differences in the relative abundance of scraping, excavating, and browsing 

parrotfishes (Januchowski-Hartley et al. 2017; Lange et al. 2020a). Nonetheless, previous net 

carbonate budget studies have suggested that ≥10% coral cover may be a suitable threshold for 

the maintenance of positive carbonate production states in the Caribbean (Perry et al. 2013), ~2% 

for Acropora dominated reefs and ~12.5% for Porites/Pocillopora dominated reefs in the 

Chagos Archipelago (Perry et al. 2015), and 11-18% coral cover in the Seychelles depending on 

the relative abundances of excavating parrotfishes (Januchowski-Hartley et al. 2017). In this 

study, we observed a positive correlation between net carbonate budgets and coral cover (Figure 

5b) with a threshold coral cover of 8.6±6.0% for maintaining positive net carbonate budgets 

(Figure 5b, Table S2). We posit that this slightly lower threshold for maintaining positive net 

carbonate budgets was likely due to the high abundance of framework building corals across the 

Pacific Ocean (Darling et al. 2019), potential differences in parrotfish functional groups 

(Januchowski-Hartley et al. 2017; Lange et al. 2020a), and the 50% reincorporation rate of 

parrotfish bioerosion applied here that was not used in the former studies (Perry et al. 2013, 

2015; Januchowski-Hartley et al. 2017). For example, the large uncertainties in net carbonate 

budgets for Wake Atoll were owing to a few observations of Bolbometopon muricatum, which 

are responsible for anomalously high estimates of bioerosion (Perry et al. 2018b). Consequently, 

we found that coral reefs with positive net carbonate budgets had significantly higher coral cover 

than reefs with negative net carbonate budgets (Figure 6d). No relationship was observed 

between coral cover and ∆nTA in this study (Figure 5c, 6e; but see the above discussion of coral 
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reef carbonate production estimates and alkalinity anomalies). Coral cover was greater for coral 

reefs with a positive combined census-based and chemistry-based calcification vulnerability 

index compared to neutral classifications (Figure 6f). Reefs with a neutral calcification 

vulnerability index had a mean (±95%) coral cover of 13.7±7.9%, which is in remarkable 

agreement with the 2-18% previously established thresholds for net carbonate budget tipping 

points (Perry et al. 2013, 2015; Januchowski-Hartley et al. 2017) despite being based on both 

census-based and chemistry-based methods. 

However, there was considerable variability in coral cover among sites with a neutral 

calcification vulnerability index and we also observed a wide range of coral cover for sites with a 

positive calcification vulnerability index with coral cover less than 10% for many of those sites 

(Figure 6). These findings highlight the nuance and uncertainties associated with using a 

simplified coral cover threshold as a proxy for assessing the capacity for reefs to maintain 

CaCO3 structures. Crustose coralline algae and other calcifying organisms are likely to become 

increasingly important contributors for maintaining CaCO3 structures in low coral cover (<10%) 

or recently bleached coral reef systems (Kayanne et al. 2005; Courtney et al. 2018). For example, 

the 12-28% cover of crustose coralline algae at Jarvis in this study may have maintained positive 

alkalinity anomalies indicative of a net calcifying reef state despite 0 to 2.5% coral cover at the 

time of the surveys (Figure 3, Table S1). Coupled with the evidence that CCA may be increasing 

following mass bleaching events on certain reefs in the equatorial Pacific (Pacific Islands 

Fisheries Science Center 2021), these findings support the need to further assess the role of 

crustose coralline algae and other non-scleractinian coral calcifiers in maintaining positive net 

carbonate budgets and net calcification for low coral cover reefs (<10%) (Courtney et al. 2018). 
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As the climate crisis continues, robust time series measurements of coral reef status and 

capacity to maintain carbonate structures will become increasingly important to evaluate the 

current and projected maintenance of coral reef structures and the associated ecosystem services 

they provide to humanity. The automated annotation of benthic community composition from 

imagery via CoralNet substantially reduces the efforts to generate sustained time series data and 

is already producing accurate and traceable classification of benthic communities (Williams et al. 

2019) with the additional capacity to quantify benthic carbonate production (Chan et al. 2021). 

We project that these estimates will only continue to improve with the development of location-

specific calcification and bioerosion rates from in situ measurements and application of deep 

learning algorithms to directly assess substrate-specific and entire reef volume changes from 

repeated three-dimensional coral reef models derived from structure from motion (SfM) (see also 

(Lange et al. 2020a)). Moreover, snapshots such as the data presented in the current study 

provide nearly instantaneous evidence to evaluate net calcification states, but alone are unable to 

capture any changes in coral reef calcification state through time (i.e., increasing, constant, or 

decreasing) that are essential information for developing any potential intervention strategies. 

Sustained long-term ecological and biogeochemical monitoring of coral reef state variables such 

as the calcification metrics presented in this study will therefore prove useful for monitoring the 

vulnerability of coral reefs to sustain carbonate structures through time to inform evidence-based 

management of coral reefs and their associated ecosystem services in the Anthropocene. 
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Table S3. Site-level summary data are provided for each of the 56 coral reef sites presented in this study including: 

sample meta-data, summary of benthic community composition, benthic carbonate production, parrotfish bioerosion, 

net carbonate budgets, salinity normalized total alkalinity anomalies, categorical reef condition metrics, and degree 

heating weeks associated with the 2014-2017 global coral bleaching event. 
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